Shear strain imaging using shear deformations.

نویسندگان

  • Min Rao
  • Tomy Varghese
  • Ernest L Madsen
چکیده

In this article we investigate the generation of shear strain elastograms induced using a lateral shear deformation. Ultrasound simulation and experimental results demonstrate that the shear strain elastograms obtained under shear deformation exhibit significant differences between bound and unbound inclusions in phantoms, when compared to shear strain images induced upon an axial compression. A theoretical model that estimates the decorrelation between pre- and postdeformation radio frequency signals, as a function of extent of shear deformation, is also developed. Signal-to-noise ratios of shear strain elastograms obtained at different shear angles are investigated theoretically and verified using ultrasound simulations on a uniformly elastic phantom. For the simulation and experiment, a two-dimensinal block-matching-based algorithm is used to estimate the axial and lateral displacement. Shear strains are obtained from the displacement vectors using a least-squares strain estimator. Our results indicate that the signal-to-noise ratio (SNR) of shear strain images increases to reach a maximum and saturates, and then decreases with increasing shear angle. Using typical system parameters, the maximum achievable SNR for shear strain elastography is around 8 (18 dB), which is comparable to conventional axial strain elastography induced by axial compression. Shear strain elastograms obtained experimentally using single inclusion tissue-mimicking phantoms with both bound and unbound inclusions (mimicking cancerous masses and benign fibroadenomas, respectively) demonstrate the characteristic differences in the depiction of these inclusions on the shear strain elastograms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal component analysis of shear strain effects.

Shear stresses are always present during quasi-static strain imaging, since tissue slippage occurs along the lateral and elevational directions during an axial deformation. Shear stress components along the axial deformation axes add to the axial deformation while perpendicular components introduce both lateral and elevational rigid motion and deformation artifacts into the estimated axial and ...

متن کامل

A Quasi-3D Polynomial Shear and Normal Deformation Theory for Laminated Composite, Sandwich, and Functionally Graded Beams

Bending analyses of isotropic, functionally graded, laminated composite, and sandwich beams are carried out using a quasi-3D polynomial shear and normal deformation theory. The most important feature of the proposed theory is that it considers the effects of transverse shear and transverse normal deformations. It accounts for parabolic variations in the strain/stress produced by transverse shea...

متن کامل

Spatial periodicity in growth plate shear mechanical properties is disrupted by vitamin D deficiency.

The growth plate is a highly organized section of cartilage in the long bones of growing children that is susceptible to mechanical failure as well as structural and functional disruption caused by a dietary deficiency of vitamin D. The shear mechanical properties of the proximal tibial growth plate of rats raised either on normal or vitamin D and calcium deficient diets were measured. A sinuso...

متن کامل

A novel method for visualising and quantifying through-plane skin layer deformations.

Skin is a multilayer composite and exhibits highly non-linear, viscoelastic, anisotropic material properties. In many consumer product and medical applications (e.g. during shaving, needle insertion, patient re-positioning), large tissue displacements and deformations are involved; consequently large local strains in the skin tissue can occur. Here, we present a novel imaging-based method to st...

متن کامل

The mechanical behaviour of brain tissue: large strain response and constitutive modelling.

The non-linear mechanical behaviour of porcine brain tissue in large shear deformations is determined. An improved method for rotational shear experiments is used, producing an approximately homogeneous strain field and leading to an enhanced accuracy. Results from oscillatory shear experiments with a strain amplitude of 0.01 and frequencies ranging from 0.04 to 16 Hz are given. The immediate l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 35 2  شماره 

صفحات  -

تاریخ انتشار 2008